
Harp-DAAL for High Performance Big Data Computing 

 

Large-scale data analytics is revolutionizing many business and scientific domains. Easy-to-

use scalable parallel techniques are necessary to process big data and gain meaningful 

insights. We introduce a novel HPC-Cloud convergence framework named Harp-DAAL and 

demonstrate that the combination of Big Data (Hadoop) and HPC techniques can 

simultaneously achieve productivity and performance. Harp is a distributed Hadoop-based 

framework that orchestrates efficient node synchronization [1]. Harp uses Intel® Data 

Analytics Accelerator Library (DAAL) [2], for its highly optimized kernels on Intel® Xeon and 

Xeon Phi architectures. This way the high-level API of Big Data tools can be combined with 

intra-node fine-grained parallelism that is optimized for HPC platforms. We illustrate this 

framework in detail with K-means clustering, a computation-bounded algorithm used in 

image clustering. We also show the broad applicability of Harp-DAAL by discussing the 

performance of three other big data algorithms: Subgraph Counting by color coding, Matrix 

Factorization and Latent Dirichlet Allocation. They share issues such as load imbalance, 

irregular structure, and communication issues that create difficult challenges. 

 

 
Figure 1 Cloud-HPC interoperable software for High Performance Big Data Analytics at Scale 

 

The categories in Figure 1 illustrate a classification of data intensive computation into five 

computation models that map into five distinct system architectures. It starts with Sequential, 

followed by centralized batch architectures corresponding exactly to the three forms of 

MapReduce: Map-Only, MapReduce and Iterative MapReduce. Category five is the classic 

MPI model. Harp brings Hadoop users the benefits of supporting all 5 classes of data-

intensive computation, from pleasingly parallel to machine learning and simulations. We 

have expanded the applicability of Hadoop (with Harp plugin) for more classes of Big Data 

applications, especially complex data analytics such as machine learning and graph. We re-

design a modular software stack with native kernels (with DAAL) to effectively utilize scale-

up servers for machine learning and data analytics applications. Harp-DAAL shows how 

simulations and Big Data can use common programming environments with a runtime based 

on a rich set of collectives and libraries.  



How to interface Harp and DAAL? 

Intel DAAL already provides API to their native C/C++ kernels by using high-level 

programming languages such as Java and Python. Since Harp is written in Java and 

extended from the Hadoop ecosystem, we choose Java to interface Harp and DAAL and 

optimize it particularly for applications with big intermediate data (e.g., machine learning 

model) of communication. In Harp-DAAL, data is stored in a hierarchical data structure 

named Harp-Table, which consists of tagged partitions. Each partition contains a partition ID 

(metadata) and a user-defined serializable Java object such as a primitive array. When 

doing communication, data is transferred among distributed cluster nodes via Harp collective 

communication operations. When doing local computation, data moves from Harp-Table 

(JVM heap memory) to DAAL native kernels (off-JVM heap memory). A data copy is 

unavoidable between Java object and C/C++ allocated memory space, and Figure 2 

illustrates two approaches.  

● Direct Bulk Copy: if a DAAL kernel allocates a continuous memory space for dense 

problems, Harp-DAAL will launch a bulk copy operation between a Harp-Table and a 

native memory address.  

● Multithreading Irregular Copy: if a DAAL kernel involves an irregular and sparse data 

structure, which means that the data shall be stored in segments of non-consecutive 

memory space, Harp-DAAL provides a second copy operation by using 

Java/OpenMP threads, where each thread transfers a data segment concurrently.  

 
 

 

Figure 2. Direct Bulk Copy (left) vs. Multi-threading irregular Copy (right) 

Applying Harp-DAAL to Data Analytics 

K-means is a widely used and relatively simple clustering algorithm, which allows a clear 

example of how to use Harp-DAAL. K-means uses cluster centers to model the data and 

converges quickly via an iterative refinement approach. K-means runs on a large image 

dataset from Yahoo! Flickr, which includes 100 million images, each with 4096 dimensional 

deep features extracted by using a deep convolutional network model trained on ImageNet. 

Data preprocessing includes data format transformation and dimension reduction from 4096 



to 128 by applying Principal Component Analysis (PCA). A detailed tutorial is available 

online at the website [3].  

Case Study: Harp-DAAL Implementation of K-means 

Harp-DAAL provides modular Java functions for developers to customize the K-means 

algorithm as well as tuning parameters for end users. The programming model consists of 

map functions linked by collectives. The K-means example takes seven steps as follows: 

Step 1: Load training data (feature vectors) and model data (cluster centers)  

Use the following function to load training data from HDFS. 

// create a pointArray 

List<double[]> pointArrays = LoadTrainingData(); 

 

Similarly, create a Harp table object cenTable and load centers from HDFS. Since centers 

are requested by all the mappers, the master mapper will load them and broadcast to all 

other mappers. Different center initialization methods can be supported in this fashion. 

// create a table to hold cluster centers 

Table<DoubleArray> cenTable = new Table<>(0, new DoubleArrPlus()); 

 

if (this.isMaster()) { 

  createCenTable(cenTable); 

  loadCentroids(cenTable); 

} 

// Bcast centers to other mappers 

bcastCentroids(cenTable, this.getMasterID()); 

Step 2: Convert training data from Harp to DAAL  

The training data loaded from HDFS is stored in the Java heap memory. To invoke the 

DAAL kernel, this step converts the data to a DAAL NumericTable, which includes allocating 

the native memory for the NumericTable and copying data from pointArrays to 

trainingdata_daal. 

// convert training data from Harp to DAAL 

NumericTable trainingdata_daal = convertTrainData(pointArrays); 

Step 3: Create and set up DAAL K-means kernel 

DAAL provides Java APIs to invoke native kernels for K-means on each node. It is called 

with a specification of the input training data object, the number of centers, and the number 

of threads to be used by the thread scheduler TBB and MKL libraries.  

// create a DAAL K-means kernel object 

DistributedStep1Local kmeansLocal = new DistributedStep1Local(daal_Context, Double.class, 

Method.defaultDense, this.numCentroids); 

// set up input training data 



kmeansLocal.input.set(InputId.data, trainingdata_daal); 

// specify the threads used in DAAL kernel 

Environment.setNumberOfThreads(numThreads); 

// create cenTable at daal side 

NumericTable cenTable_daal = createCenTableDAAL(); 

Step 4: Convert center format from Harp to DAAL 

The centers are stored in the Harp table cenTable for inter-process (mapper) 

communication. The centers are converted to DAAL format at each iteration.  

//Convert center format from Harp to DAAL 

convertCenTableHarpToDAAL(cenTable, cenTable_daal); 

Step 5: Local computation by DAAL kernel 

Call DAAL K-means kernels of local computation at each iteration. 

// specify cluster centers to DAAL kernel  

kmeansLocal.input.set(InputId.inputCentroids, cenTable_daal); 

// first step of local computation by using DAAL kernels to get a partial result 

PartialResult pres = kmeansLocal.compute(); 

Step 6: Inter-mapper communication 

Harp-DAAL K-means uses an AllReduce computation model, where each mapper keeps a 

local copy of the whole model data (cluster centers). However, Harp provides different 

communication operations to synchronize model data among mappers.  

● regroup & allgather (default) 

● allreduce 

● broadcast & reduce 

● push & pull 

In a regroup & allgather operation, it first combines the same center from different mappers 

and re-distributes them to mappers by a specified order. After averaging the centers, an 

allgather operation makes every mapper get a complete copy of the averaged centers. 

comm_regroup_allgather(cenTable, pres); 

 

In an allreduce operation, the centers are reduced and copied to every mapper. Then on 

each mapper an average operation is applied to the centers.  

 

comm_allreduce(cenTable, pres); 

 

At the end of each iteration, call printTable to check the clustering result. 

 

//for iteration i, check the first ten centers and print out their first ten dimensions 



printTable(cenTable, 10, 10, i); 

Step 7: Release memory and store cluster centers 

After all of the iterations, release the memory allocated for DAAL and for Harp table object. 

The center values are stored on HDFS as the output. 

 

// free memory and record time 

cenTable_daal.freeDataMemory(); 

trainingdata_daal.freeDataMemory(); 

// Write out the cluster centers 

if (this.isMaster()) { 

 KMUtil.storeCentroids(this.conf, this.cenDir, 

 cenTable, this.cenVecSize, "output"); 

} 

cenTable.release(); 

Experimental Performance Results 

The performance for Harp-DAAL is illustrated by the results for four applications [4][5] with 

different algorithmic features: 

 

● K-means: A dense clustering algorithm with regular memory access  

● MF-SGD (Matrix Factorization for Stochastic Gradient Descent): A dense 

recommendation algorithm with irregular memory access and large model data 

● Subgraph Counting: A sparse graph algorithm with irregular memory access 

● LDA (Latent Dirichlet Allocation): A sparse topic modeling algorithm with large model 

data and irregular memory access 

 

The testbed has two clusters, one with Xeon E5 2670 (Haswell) nodes and infiniband 

interconnect; the other with Xeon Phi 7250 (KNL) processors and Intel Omni-Path 

interconnect.  

 
K-means 

 Yahoo! Flickr, including 100 million images, 
each with 4096 dimensional deep features 

 

 
MF-SGD 

Twitter with 44 million vertices, 2 billion edges, 
subgraph template size of 10 to 12 vertices 

 
Subgraph Counting 

 Twitter with 44 million vertices, 2 billion edges, 
subgraph templates of 10 to 12 vertices 

 

Figure 3. Performance Comparison on three different important machine learning algorithms: K-
means, MF-SGD and Subgraph counting. 

 
In Figure 3, Harp-DAAL achieves around a 30x speedup over Spark for K-means on 30 KNL 

nodes using its highly vectorized kernels from the MKL library of DAAL. MF-SGD was run on 

up to 30 KNL nodes and achieved a 3x speedup over NOMAD, a state-of-the-art MPI C/C++ 



solution. The benefits come from Harp’s rotation collective operation that accelerates the 

communication of the big model data in the recommender system.  

 

Harp-DAAL subgraph counting on 16 Haswell nodes, has a 1.5x to 4x speedup over MPI-

Fascia for large subtemplates with billion-edged Twitter graph data The performance 

improvement comes from node-level pipeline overlapping of computation and 

communication, and single node thread concurrency improved by neighbor list partitioning of 

graph vertex.  

 

Figure 4 shows that Harp LDA achieves better convergence speed and speedup over other 

state-of-the-art MPI implementations such as LightLDA and NomadLDA [5]. This advantage 

comes from two optimizations for parallel efficiency: 1) Harp adopts the rotation computation 

model for inter-node communication of the latest model, and at the same time utilizes timer 

control to reduce the overhead of synchronization. 2) Further, at the intra-node level, a 

dynamic scheduling mechanism is developed to handle load imbalance. 

 

Figure 4. Performance of various LDA implementations on the Clueweb Dataset 
(30 Billion Tokens, 5000 Topics) 

 

The current Harp-DAAL system provides 13 distributed data analytics and machine learning 

algorithms leveraging the local computation kernels like K-means from Intel DAAL 2018 

release. In addition, Harp-DAAL is developing its own data intensive kernels. This includes 

the large-scale subgraph counting algorithm given above, that can process social network 

Twitter graph with billions of edges and subtemplates of 10 vertices in 15 minutes. The Harp-

DAAL framework and machine learning algorithms are publicly accessible [5] and users are 

encouraged to download the software, explore the tutorials, and apply Harp-DAAL to other 

data intensive applications.  
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